

Translating through Transliteration The Case of Tajik Persian

Rayyan Merchant¹, Kevin Tang²¹ ¹University of Florida, ²Heinrich Heine Universität rayyan.merchant@ufl.edu, kevin.tang@hhu.de

Heinrich Heine

Universität Düsseldorf

Background

• The Persian language is written in two different scripts

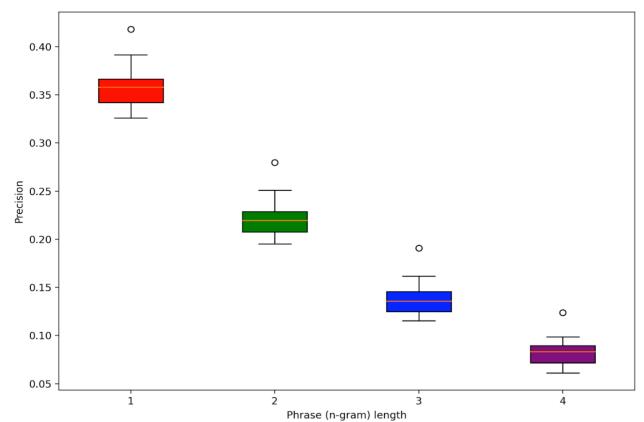
- Mutual intelligibility between standard dialects is high in spoken form, but falls to zero in written form
- Tajikistan, a country of ~10 million, cannot access written media from the greater Persian-speaking world (~100 million people
- Roughly 2.2% of the Internet is written in Persian
- Less than 0.1% is written in Cyrillic, the rest is in Arabic
- The scripts do not have a simple one-to-one correspondence, obfuscating typical transliteration
- Can a model be trained to "translate" between the two dialects through transliteration?

Method

- Previous Work:
- Proposed a statistical model for machine transliteration, but lacked a true parallel corpus with which to fully verify model performance (Davis, 2012)
- Model:
- Neural network-based Grapheme-to-Phoneme (G2P)
- Why G2P:

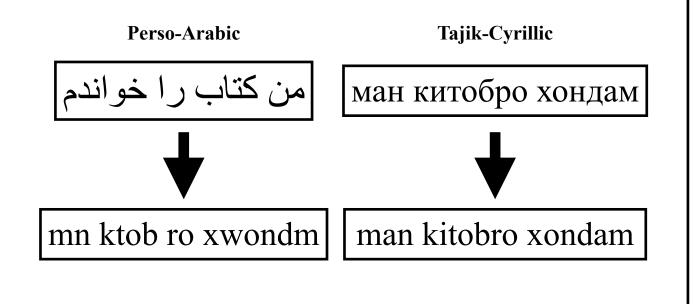
Challenges

• Script Comparison


- The Perso-Arabic script is an abjad
- Vowels are often unwritten, and sometimes ambiguous
- The speaker must know how to pronounce the word already
- The Tajik-Cyrillic script is an alphabet
- All sounds are (generally) written as they are pronounced
- The speaker does not require prior knowledge to learn how to pronounce a word
- Case Sensitivity
- The Arabic script does not implement case, while Cyrillic does
- When converting from Arabic to Cyrillic, case must be inferred

• Unwritten Grammatical Particle: "Ezâfe"

- The "Ezâfe" links two words together, and can be used to denote: possession, adjective-noun relationships, noun linkage, and given name
- Despite being so common, it is often unwritten in Perso-Arabic text, but always written in Tajik-Cyrillic
- When transliterating from Arabic to Cyrillic, the location of the "Ezâfe" must be inferred and inserted where necessary
- Non-bijective Alignment and Letter Ambiguity
- Several syllables and letters have one rendering in Cyrillic, but several in Arabic
- G2P models are typically used in Text-to-Speech (TTS) systems, converting graphemes (letters) to phonemes (pronunciations)
- Typical transliteration models do exist, but G2P may be more suited to this task, as it greatly resembles TTS
- The Arabic standard does not accurately represent pronunciation, but the Cyrillic standard does
- We seek to apply such a model (Yolchuyeva et al., 2020) in one direction: Arabic (Grapheme) to Cyrillic (Phoneme)
- **Corpus:** the <u>very first</u> aligned digraphic Persian corpus, manually collected from blogs and articles online
- ~5400 sentences, ~42,000 words


Results and Conclusion

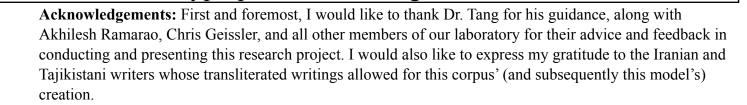
- Model Hyperparameters:
- Learning Rate: 0.00044, Dropout Rate: 0.2
- Individual Word Error Evaluation:
- 39.2% of words predicted correctly
- When including predictions 1 and 2 edit-distances away, this becomes 66.7% and 82.2%, respectively

BLEU Score Evaluation

• When transliterating from Cyrillic to Arabic, the correct option must be chosen

	Script	Example Sentence (errors marked in red)
	Arabic	امروز ناظران بین المللی کنفرانس مطبو عاتی در شهر دوشنبه برگزار مینمایند
	Cyrillic (Expected)	Имруз нозирони байналмиллали конфронси матбуоти дар шахри Душанбе баргузор менамоянд
y	Cyrillic (Predicted)	имруз нозарон беин лмлй канфаронс матбуъотй дар шахр душанбе баргузор маинаминд
	 Analy So V N 	heir counterpart in the reference translation ysis ome vowels successfully predicted, others unsuccessfully owel insertion partially successful Iodel proves unable to detect ezâfe
		1
	• F	Plusion 2P approach presents a viable approach to transliterating ersian from Arabic to Cyrillic urther improvements required before our model becomes sable

• Supplement corpus with manually-added "ezâfe" tags


• Continue hyperparameter testing

Chris Irwin Davis. 2012. Tajik-Farsi Persian Transliteration Using Statistical Machine Translation. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)*, pages 3988–3995, Istanbul, Turkey. European Language Resources Association (ELRA).

Yolchuyeva, S., Németh, G., & Gyires-Tóth, B. 2020. Transformer based grapheme-to-phoneme conversion.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. 2002. BLEU: A Method For Automatic Evaluation Of Machine Translation. In Proceedings of the 40th annual meeting on Association for Computational Linguistics.

